Propagation of Pi2 pulsations through the braking region in global MHD simulations

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS(2016)

引用 12|浏览29
暂无评分
摘要
We investigate the propagation of Pi2 period pulsations from their origin in the plasma sheet through the braking region, the region where the fast flows are slowed as they approach the inner edge of the plasma sheet. Our approach is to use both the University of California, Los Angeles (UCLA) and Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) computer codes to simulate the Earth's magnetosphere during a substorm that occurred on 14 September 2004 when Pi2 pulsations were observed. We use two different MHD models in order to test the robustness of our conclusions about Pi2. The simulations are then compared with ground-based and satellite data. We find that the propagation of the pulsations in the simulations, especially through the braking region, depends strongly on the ionospheric models used at the inner boundary of the MHD models. With respect to typical observed values, the modeled conductances are high in the UCLA model and low in the LFM model. The different conductances affect the flows, producing stronger line tying that slows the flow in the braking region more in the UCLA model than in the LFM model. Therefore, perturbations are able to propagate much more freely into the inner magnetosphere in the LFM results. However, in both models Pi2 period perturbations travel with the dipolarization front (DF) that forms at the earthward edge of the flow channel, but as the DF slows in the braking region, -8 <= x <= -6 R-E, the Pi2 period perturbations begin to travel ahead of it into the inner magnetosphere. This indicates that the flow channels generate compressional waves with periods that fall within the Pi2 range and that, as the flows themselves are stopped in the braking region, the compressional wave continues to propagate into the inner magnetosphere.
更多
查看译文
关键词
mhd
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要