Chrome Extension
WeChat Mini Program
Use on ChatGLM

Degradation mechanism of LiCoO 2 /mesocarbon microbeads battery based on accelerated aging tests

Journal of Power Sources(2014)

Cited 46|Views28
No score
Abstract
A series of LiCoO2/mesocarbon microbeads (MCMB) commercial cells cycled at different rates (0.6C, 1.2C, 1.5C, 1.8C, 2.4C and 3.0C) are disassembled and the capacity fade mechanism is proposed by analyzing the structure, morphology and electrochemical performance evolution at the capacity retention of 95%, 90%, 85%, 80%. The capacity deterioration of the commercial cell is mainly caused by the decay of the reversible capacity of LiCoO2 cathode, the irreversible loss of active lithium and the lithium remaining in anode. The proportions of effects by the above three factors are calculated accurately. The consumption of the active lithium leads to a cell imbalance between the anode and the cathode. The electrochemical test results indicate that the capacity fade of the active materials at the low rate is more obvious than that at the high rate. The influence of the active lithium is gradually increscent with the increasing rate. The rate of 1.5C is the optimal value to accelerate the aging of the full cell by comparing the testing results at different capacity retentions in the specific condition of low charge/discharge rate and shallow depth of discharge.
More
Translated text
Key words
Accelerated cycling test,Long-term cycle,Cell imbalance,Cathode fade,Active lithium,Polarization
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined