Zirconium Evaluations for ENDF/B-VII.2 for the Fast Region

Nuclear Data Sheets(2014)

引用 2|浏览11
暂无评分
摘要
We have performed a new combined set of evaluations for 90–96Zr, including new resolved resonance parameterizations from Said Mughabghab for 90,91,92,94,96Zr and fast region calculations made with EMPIRE-3.1. Because 90Zr is a magic nucleus, stable Zr isotopes are nearly spherical. A new soft-rotor optical model potential is used allowing calculations of the inelastic scattering on low-lying coupled levels of vibrational nature. A soft rotor model describes dynamical deformations of the nucleus around the spherical shape and is implemented in EMPIRE/OPTMAN code. The same potential is used with rigid rotor couplings for odd-A nuclei. This then led to improved elastic angular distributions, helping to resolve improper leakage in the older ENDF/B-VII.1β evaluation in KAPL proprietary, ZPR and TRIGA benchmarks. Another consequence of 90Zr being a magic nucleus is that the level densities in both 90Zr and 91Zr are unusually low causing the (n,el) and (n,tot) cross sections to exhibit large fluctuations above the resolved resonance region. To accommodate these fluctuations, we performed a simultaneous constrained generalized least-square fit to (n,tot) for all isotopic and elemental Zr data in EXFOR, using EMPIRE's TOTRED scaling factor. TOTRED rescales total cross sections so that the optical model calculations are unaltered by the rescaling and the correct competition between channels is maintained. In this fit, all (n,tot) data in EXFOR was used for Ein>100keV, provided the target isotopic makeup could be correctly understood, including spectrum averaged data and data with broad energy resolution. As a result of our fitting procedure, we will have full cross material and cross reaction covariance for all Zr isotopes and reactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要