Leakage Reduction Using DTSCL and Current Mirror SCL Logic Structures for LP-LV Circuits

Circuits and Systems(2013)

引用 1|浏览5
暂无评分
摘要
This paper presents a novel approach to design robust Source Coupled Logic (SCL) for implementing ultra low power circuits. In this paper, we propose two different source coupled logic structures and analyze the performance of these structures with STSCL (Sub-threshold SCL). The first design under consideration is DTPMOS as load device which analyses the performance of Dynamic Threshold SCL (DTSCL) Logic with previous source coupled logic for ultra low power operation. DTSCL circuits exhibit a better power-delay Performance compared with the STSCL Logic. It can be seen that the proposed circuit provides 56% reduction in power delay product. The second design under consideration uses basic current mirror active load device to provide required voltage swing. Current mirror source coupled logic (CMSCL) can be used for high speed operation. The advantage of this design is that it provides 54% reduction in power delay product over conventional STSCL. The main drawback of this design is that it provides a higher power dissipation compared to other source coupled logic structures. The proposed circuit provides lower sensitivity to temperature and power supply variation, with a superior control over power dissipation. Measurements of test structures simulated in 0.18 μm CMOS technology shows that the proposed DTSCL logic concept can be utilized successfully for bias currents as low as 1 pA. Measurements show that existing standard cell libraries offer a good solution for ultra low power SCL circuits. Cadence Virtuoso schematic editor and Spectre Simulation tools have been used.
更多
查看译文
关键词
cmos integrated circuits
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要