Three-Dimensional Adaptive Soft Phononic Crystals

JOURNAL OF APPLIED PHYSICS(2015)

引用 50|浏览13
暂无评分
摘要
We report a new class of three-dimensional (3D) adaptive phononic crystals whose dynamic response is controlled by mechanical deformation. Using finite element analysis, we demonstrate that the bandgaps of the proposed 3D structure can be fully tuned by the externally applied deformation. In fact, our numerical results indicate that the system acts as a reversible phononic switch: a moderate level of applied strain (i.e., -0.16) is sufficient to completely suppress the bandgap, and upon the release of applied strain, the deformed structure recovers its original shape, which can operate with a sizable bandgap under dynamic loading. In addition, we investigate how material damping significantly affects the propagation of elastic waves in the proposed 3D soft phononic crystal. We believe that our results pave the way for the design of a new class of soft, adaptive, and re-configurable 3D phononic crystals, whose bandgaps can be easily tuned and switched on/off by controlling the applied deformation. (C) 2015 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要