Numerical investigation of radial inflow in the impeller rear cavity with and without baffle

Science China-technological Sciences(2016)

引用 6|浏览1
暂无评分
摘要
In typical small engines, the cooling air for high pressure turbine (HPT) in a gas turbine engine is commonly bled off from the main flow at the tip of the centrifugal impeller. The pressurized air flow is drawn radially inwards through the impeller rear cavity. The centripetal air flow creates a strong vortex because of high inlet tangential velocity, which results in significant pressure losses. This not only restricts the mass flow rate, but also reduces the cooling air pressure for down-stream hot components. The present study is devoted to the numerical modeling of flow in an impeller rear cavity. The simulations are carried out with axisymmetric and 3-D sector models for various inlet swirl ratio β 0 (0–0.6), turbulent flow parameter λ T (0.028–0.280) with and without baffle. The baffle is a thin plate attached to the stationary wall of the cavity, and is proved to be useful in reducing the pressure loss of centripetal flow in the impeller rear cavity in the current paper. Further flow details in impeller rear cavity with and without baffle are displayed using CFD techniques. The CFD results show that for any specified geometry, the outlet pressure coefficient of impeller rear cavity with or without baffle depends only on the inlet swirl ratio and turbulent flow parameter. Meanwhile, the outlet pressure coefficient of the cavity with baffle is indeed smaller than that of cavity without baffle, especially for the cases with high inlet swirl ratio. The suppression of the effect of centrifugal pumping and the mixing beween the main air which is downstream of the baffle and the recirculating flow of the vortex in the stationary cavity, which are caused by the use of baffle, are the underlying reasons that lead to the reduction of outlet pressure loss.
更多
查看译文
关键词
impeller rear cavity,de-swirling device,baffle,Batchelor's Model,Vortex Model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要