COMETARY VOLATILES AND THE ORIGIN OF COMETS

ASTROPHYSICAL JOURNAL(2012)

引用 138|浏览71
暂无评分
摘要
We describe recent results on the CO/CO2/H2O composition of comets together with a survey of older literature (primarily for CO/H2O) and compare these with models of the protoplanetary disk. Even with the currently small sample, there is a wide dispersion in abundance ratios and little if any systematic difference between Jupiter-family comets (JFCs) and long-period and Halley-type comets (LPCs and HTCs). We argue that the cometary observations require reactions on grain surfaces to convert CO to CO2 and also require formation of all types of comets in largely, but not entirely, overlapping regions, probably between the CO and CO2 snow lines. Any difference in the regions of formation is in the opposite direction from the classical picture with the JFCs having formed closer to the Sun than the LPCs. In the classical picture, the LPCs formed in the region of the giant planets and the JFCs formed in the Kuiper Belt. However, these data suggest, consistent with suggestions on dynamical grounds, that the JFCs and LPCs formed in largely overlapping regions where the giant planets are today and with JFCs on average forming slightly closer to the Sun than did the LPCs. Presumably at least the JFCs passed through the scattered disk on their way to their present dynamical family.
更多
查看译文
关键词
comets: general,Oort cloud,protoplanetary disks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要