Improved Quantum Efficiency In Ingan Light Emitting Diodes With Multi-Double-Heterostructure Active Regions

APPLIED PHYSICS LETTERS(2012)

引用 18|浏览6
暂无评分
摘要
InGaN light emitting diodes (LEDs) with multiple thin double-heterostrucutre (DH) active regions separated by thin and low energy barriers were investigated to shed light on processes affecting the quantum efficiency and means to improve it. With increasing number of 3 nm-thick DH active layers up to four, the electroluminescence efficiency scaled nearly linearly with the active region thickness owing to reduced carrier overflow with increasing total thickness, showing almost no discernible efficiency degradation at high injection levels up to the measured current density of 500 A/cm(2). Comparison of the resonant excitation dependent photoluminescence measurements at 10 K and room temperature also confirmed that further increasing the number of DH layers beyond six results in degradation of the material quality, and therefore, increasing nonradiative recombination. Using multiple DH active regions is shown to be a superior approach for quantum efficiency enhancement compared with simply increasing the single DH thickness or the number of quantum wells in LED structures due to better material quality and larger number of states available. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739419]
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要