Doping And Hysteretic Switching Of Polymer-Encapsulated Graphene Field Effect Devices

APPLIED PHYSICS LETTERS(2013)

引用 11|浏览2
暂无评分
摘要
The effects of encapsulating graphene with poly(methyl methacrylate) (PMMA) polymer are determined through in situ electrical transport measurements. After regenerating graphene devices in dry-nitrogen environments, PMMA is applied to their surfaces. Low-temperature annealing decreases the overall doping level, suggesting that residual solvent plays an important role in the doping. For few-layer graphene devices, we even observe stable n-doping through annealing. Application of solvent onto encapsulated devices demonstrates enhanced hysteric switching between p and n-doped states. The stability and ubiquitous use of PMMA in nanolithography make this polymer a potentially useful localized doping agent for graphene and other two-dimensional materials. (C) 2013 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要