Controlling Combustion Phasing of Recompression HCCI with a Switching Controller

IFAC Proceedings Volumes(2010)

引用 9|浏览7
暂无评分
摘要
Homogeneous charge compression ignition (HCCI) is more efficient and produces significantly less NOx emissions compared to spark ignitions. Using an exhaust recompression strategy to achieve HCCI, however, produces cycle-to-cycle coupling which makes the problem of controlling combustion phasing more difficult. In the past, a linear feedback controller designed with a single linearized model is effective in controlling combustion phasing around an operating point. However, HCCI dynamics can change dramatically around different operating points such that a single linearization is insufficient to approximate the entire operating range. Further investigation shows that the operating range can be roughly divided into three regions where a linear model can capture the qualitative system behavior in each of the regions. As a result, a three zone switching linear model approximates recompression HCCI dynamics far better than a single linearization. This new model structure also suggests that two of the three regions need completely opposite control actions. Therefore, the approach of using a static feedback control based on a single linearziation cannot be appropriate over the entire operating range. We propose a switching controller based on the switching linear model and achieve very good performance in controlling HCCI combustion phasing throughout the entire operating region. Lastly, a semi-definite programming (SDP) formulation of finding a Lyapunov function for the switching linear model is presented in order to guarantee stability of the switching control scheme.
更多
查看译文
关键词
HCCI,switching control,semi-definite programming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要