The puzzling orbital period evolution of the low mass X-ray binary AX J1745.6-2901

mag(2015)

引用 30|浏览8
暂无评分
摘要
The orbital period evolution of X-ray binaries provides fundamental clues to understanding mechanisms of angular momentum loss from these systems. We present an X-ray eclipse timing analysis of the transient low mass X-ray binary AX J1745.6-2901. This system shows full eclipses and thus is one of the few objects for which accurate orbital evolution studies using this method can be carried out. We report on XMM-Newton and ASCA observations covering 30 complete X-ray eclipses spanning an interval of more than 20 years. We improve the determination of the orbital period to a relative precision of $2\times10^{-8}$, two orders of magnitudes better than previous estimates. We determine, for the first time, a highly significant rate of decrease of the orbital period $\dot{P}_{orb}=-4.03\pm0.32\times10^{-11}$~s/s. This is at least one order of magnitude larger than expected from conservative mass transfer and angular momentum losses due to gravitational waves and magnetic breaking, and might result from non-conservative mass transfer. Imprinted on the long term evolution of the orbit, we observe highly significant eclipse leads-delays of ~10-20 s, characterised by a clear state dependence in which, on average, eclipses occur earlier during the hard state.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要