The Influence of Nitrogen Doping on the Chemical and Local Bonding Environment of Amorphous and Crystalline Ge 2 Sb 2 Te 5

J. S. Washington, E. Joseph,M. A. Paesler, G. Lucovsky,J. L. Jordan-Sweet,S. Raoux, C. F. Chen,A. Pyzyna, R. K. Dasaka,A. Schrott,C. Lam,B. Ravel,J. Woicik

MRS Proceedings(2009)

引用 2|浏览37
暂无评分
摘要
Recent interest in phase change materials (PCMs) for non-volatile memory applications has been fueled by the promise of scalability beyond the limit of conventional DRAM and NAND flash memory [1]. However, for such solid state device applications, Ge 2 Sb 2 Te 5 (GST), GeSb, and other chalcogenide PCMs require doping. Doping favorably modifies crystallization speed, crystallization temperature, and thermal stability but the chemical role of the dopant is not yet fully understood. In this work, X-ray Absorption Fine Spectroscopy (XAFS) is used to examine the chemical and structural role of nitrogen doping (N-) in as-deposited and crystalline GST thin films. The study focuses on the chemical and local bonding environment around each of the elements in the sample, in pre and post-anneal states, and at various doping concentrations. We conclude that the nitrogen dopant forms stable Ge-N bonds as deposited, which is distinct from GST bonds, and remain at the grain boundary of the crystallites such that the annealed film is comprised of crystallites with a dopant rich grain boundary.
更多
查看译文
关键词
amorphous,dopant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要