Tailoring of Hydrophilic to Hydrophobic Coating Properties for Space Exploration Contamination Control

41st International Conference on Environmental Systems(2011)

引用 0|浏览2
暂无评分
摘要
On the lunar and Martian surface, dust contamination is a serious problem for equipment and vehicles since the lunar and Martian soils have fine texture compared to terrestrial dust particle size distributions. Dust contamination is a serious problem for equipment and vehicles for space mission applications and gathers on photonic sensors inhibiting motion and data gathering. Photonic devices that require transparency to light for maximum efficiency, such as solar photovoltaic power systems, video cameras and optical or infrared detectors, can be seriously affected by dust accumulation. The thermal and radiation environment also pose unique challenges because of its large temperature variations and its interaction with the local plasma environment and solar UV and X-rays induced photoemission of electrons. Superhydrophilic materials are composed of polar molecules and have been used to defog glass, enable oil spots to be swept away easily with water, as door mirrors for cars and coatings for buildings. Hydrophobic molecules tend to be non-polar and thus prefer other neutral molecules and nonpolar solvents. Hydrophobic molecules often cluster together. Hydrophobic surfaces contain materials that are difficult to wet with liquids, with superhyrophobic surfaces having contact angles in excess of 150° (the equilibrium angle of contact of a liquid on a rigid surface where liquid, solid and gas phases meet). This paper presents an overview of the fundamental forces (van der Waals) which allows certain contamination to adhere to critical photonic surfaces and the various passive coatings phenomenology (hydrophilic to hydrophobic) that is used to minimize this contamination. Gamma and proton radiation testing of these coatings demonstrate their molecular, contact angle and neutralization property resistance to space radiation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要