谷歌浏览器插件
订阅小程序
在清言上使用

A Mathematical Model of Kinetoplastid Mitochondrial Gene Scrambling Advantage

arxiv

引用 23|浏览4
暂无评分
摘要
We model and discuss advantages of pan-editing, the complex way of expressing mitochondrial genes in kinetoplastids. The rapid spread and preservation of pan-editing seems to be due to its concomitant fragment dispersal. Such dispersal prevents losing temporarily non expressed mitochondrial genes upon intense intraspecific competition, by linking non expressed fragments to parts which are still needed. We mathematically modelled protection against gene loss, due to the absence of selection, by this kind of fragment association. This gives ranges of values for parameters like scrambling extent, population size, and number of generations still retaining full genomes despite limited selection. Values obtained seem consistent with those observed. We find a quasi-linear correlation between dispersal and number of generations after which populations lose genes, showing that pan-editing can be selected to effectively limit gene loss under relaxed selective pressure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要