The Development of Large Flat Inflatable Antennna for Deep-Space Communications

Space 2004 Conference and Exhibit(2012)

引用 5|浏览2
暂无评分
摘要
NASA/JPL’s deep-space exploration program has been placing emphasis on reducing the mass and stowage volume of its spacecraft’s high-gain and large-aperture antennas. To achieve these goals, the concept of deployable flat reflectarray antenna using an inflatable/thin-membrane structure was introduced at JPL several years ago. A reflectarray is a flat array antenna space-fed by a low-gain feed located at its focal point in a fashion similar to that of a parabolic reflector. The reflectarray’s elements, using microstrip technology, can be printed onto a flat thinmembrane surface and are each uniquely designed to compensate for the different phase delays due to different path lengths from the feed. Although the reflectarray suffers from limited bandwidth (typically < 10%), it offers a more reliably deployed and maintained flat “natural” surface. A recent hardware development at JPL has demonstrated that a 0.2mm rms surface tolerance (1/50 th of a wavelength) was achieved on a 3-meter Ka-band inflatable reflectarray. Another recent development, to combat the reflectarray’s narrow band characteristic, demonstrated that dual-band performance, such as X- and Ka-bands, with an aperture efficiency of above 50 percent is achievable by the reflectarray antenna. To mechanically deploy the antenna, the reflectarray’s thin membrane aperture surface is supported, tensioned and deployed by an inflatable structure. There are several critical elements and challenging issues associated with the inflatable boom structure. First, the inflatable boom must be made rigidizable so that, once the boom is fully deployed in space, it rigidizes itself and the inflation system is no longer needed. In addition, if the boom is penetrated by small space debris, the boom will maintain its rigidity and not cause deformation to the antenna structure. To support large apertures (e.g. 10m or beyond) without causing any buckling to the small-diameter inflatable boom during vibration, the tube, in addition to rigidization, is also reinforced by circumferential thin blades, as well as axial blades. Second, a controlled deployment mechanism, such as by using Velcro strips, must also be implemented into the system so that, for very large structures, the long inflatable booms can be deployed in a time-controlled fashion and not get tangled with each other. Third, the thermal analysis is another critical element and must be performed for the boom design in order to assure that the inflated boom, under extreme space thermal conditions, will not deform significantly. Finally, the dynamic vibration analysis must also be performed on the inflatable structure. This will investigate the response of the structure due to excitation introduced by the spacecraft maneuvering and thus determine any necessary damping. Several reflectarray antennas have been developed at JPL to demonstrate the technology. These include an earlier 1meter X-band inflatable reflectarray, a 3-meter Ka-band inflatable reflectarray, a half-meter dual-band (X and Ka) reflectarray, and the current on-going 10-meter inflatable structure development. The detailed RF and mechanical descriptions of these antennas, as well as their performances, will be presented during the conference.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要