Local and global effects of beta decays on r-process

mag(2014)

引用 24|浏览2
暂无评分
摘要
Nuclear beta decay rates are an essential ingredient in simulations of the astrophysical r-process. Most of these rates still rely on theoretical modeling. However, modern radioactive ion-beam facilities have allowed to measure beta half lives of some nuclei on or close to the r-process path. These data indicate that r-process half lives are in general shorter than anticipated in the standard theoretical predictions based on the Finite Range Droplet Model (FRDM). The data have also served as important constraints for improved predictions of half lives based on continuum QRPA calculations on top of the energy-density functional theory. Although these calculations are yet limited to spherical nuclei, they include the important r-process waiting point nuclei close to and at the neutron magic numbers $N=50, 82$ and 126. We have studied the impact of these new experimental and theoretical half lives on r-process nucleosynthesis within the two astrophysical sites currently favored for the r process: the neutrino-driven wind from the freshly born neutron star in a supernova explosion and the ejecta of the merger of two neutron stars. We find that the, in general, shorter beta decay rates have several important effects on the dynamics of r-process nucleosynthesis. At first, the matter flow overcomes the waiting point nuclei faster enhancing matter transport to heavier nuclei. Secondly, the shorter half lives result also in a faster consumption of neutrons resulting in important changes of the conditions at freeze-out with consequences for the final r-process abundances. Besides these global effects on the r-process dynamics, the new half lives also lead to some local changes in the abundance distributions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要