Quantification of Mouse Embryonic Eye Development with Optical Coherence Tomography In Utero

Journal of biomedical photonics & engineering(2015)

引用 29|浏览5
暂无评分
摘要
Mouse models are commonly used as research tools to understand regulatory pathways affected by human diseases and disorders. Live imaging tools for visualization of mouse embryonic ocular tissues would be beneficial in research associated with developmental ocular defects. In this study, in utero quantitative assessment of ocular structures in mouse embryos was performed with a swept-source optical coherence tomography (SSOCT). To define developmental changes in eye morphology in live embryos, the volume of the embryonic eye lens and the globe at different embryonic stages ranging from E13.5 to E18.5 was quantified. It is determined that the major axis diameter of the eye lens and the globe was found to increase from 0.44±0.18 mm to 0.98±0.05 mm and from 0.56±0.22 mm to 1.23±0.14 mm, respectively, as the embryo ages from E13.5 to E18.5. For the same stages, the volume of the eye lens and globe was found to increase from 0.028±0.027 mm 3 to 0.32±0.08 mm 3 and from 0.085±0.08 mm 3 to 0.75±0.27 mm 3 , respectively. These results suggest that OCT can accurately assess developmental processes of ocular structures and can be potentially used to assess embryonic ocular growth in mouse mutants with eye abnormalities and to study the effect of toxicological and pharmacological agents.
更多
查看译文
关键词
in utero
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要