Persistent Skyrmion Lattice of Non-Interacting Electrons in Spin-Orbit Coupled Double Wells

mag(2015)

引用 24|浏览3
暂无评分
摘要
A persistent spin helix (PSH) is a robust helical spin-density pattern arising in disordered 2D electron gases with Rashba $\alpha$ and Dresselhaus $\beta$ spin-orbit (SO) tuned couplings, i.e., $\alpha=\pm\beta$. Here we investigate the emergence of a Persistent Skyrmion Lattice (PSL) resulting from the coherent superposition of PSHs along orthogonal directions -- crossed PSHs -- in wells with two occupied subbands $\nu=1,2$. Our calculation shows that the Rashba $\alpha_\nu$ and Dresselhaus $\beta_\nu$ couplings can be simultaneously tuned to equal strengths but opposite signs, e.g., $\alpha_1= \beta_1$ and $\alpha_2=-\beta_2$. In this regime and away from band anticrossings, our non-interacting electron gas sustains a topologically non-trivial skyrmion-lattice spin-density excitation, which inherits the robustness against time-reversal conserving perturbations from its underlying crossed PSHs. We find that the spin relaxation rate due to the interband SO coupling is comparable to that of the cubic Dresselhaus term as a mechanism for the PSL decay. Near the anticrossing, the strong interband-induced spin mixing leads to unusual spin textures along the energy contours beyond those of the Rahsba-Dresselhaus bands. We consider realistic GaAs and InSb wells for possible experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要