Comparing Extended Port And Corrugated Wall Jet Impingement Geometry For Combustor Liner Backside Cooling

PROCEEDINGS OF THE ASME TURBO EXPO 2007, VOL 4, PTS A AND B(2007)

引用 12|浏览1
暂无评分
摘要
Impinging jets are commonly used to enhance heat transfer in modem gas turbine engines. Impinging jets used in turbine blade cooling typically operate at lower Reynolds numbers in the range of 10,000 to 20,000. In combustor liner cooling, the Reynolds numbers of the jets can be as high as 60,000. The present study is aimed at experimentally testing two different styles of jet impingement geometries to be used in backside combustor cooling. The higher jet Reynolds numbers lead to increased overall heat transfer characteristics, but also an increase in crossflow caused by spent air. The crossflow air has the effect of rapidly degrading the downstream jets at high jet Reynolds numbers. In an effort to increase the efficiency of the coolant air, configurations designed to reduce the harmful effects of crossflow are studied. Two main designs, a. corrugated wall and extended ports, are tested. Local heat transfer coefficients are obtained for each test section through a transient liquid crystal technique. Results show that both geometries reduce the crossflow induced degradation on downstream jets, but the individual geometries perform better at different Reynolds numbers. The extended port and corrugated wall configurations show similar benefits at the high Reynolds numbers, but at low Reynolds numbers, the extended port design increases the overall level of heat transfer. This is attributed to the developed jet velocity profile at the tube exit. The benefit of the developed jet velocity profile diminishes as jet velocities rise and the air has less time to develop prior to exiting.
更多
查看译文
关键词
combustion chambers,geometry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要