谷歌浏览器插件
订阅小程序
在清言上使用

Cold Tolerance of the Predatory Ladybird Cryptolaemus Montrouzieri

BioControl (Dordrecht)(2015)

引用 15|浏览7
暂无评分
摘要
The effect of low temperature acclimation and diet on the supercooling point (SCP, the temperature at which the insect’s body fluids freeze) and lethal time (LTime, time required to kill 50 % of the population at a temperature of 5 °C) of the mealybug destroyer, Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae), was assessed in the laboratory. The SCP of acclimated adult ladybirds which were allowed to complete development to adulthood at 18 °C and a 8:16(L:D)h photoperiod, or at 25 °C and a 16:8(L:D)h photoperiod, and which were subsequently kept at 10 °C and a 12:12(L:D)h photoperiod for seven days, was −17.4 and −16.8 °C, respectively. These SCP-values were approximately 7 °C lower than the value of −9.9 °C for non-acclimated ladybirds maintained at a temperature of 25 °C and a photoperiod of 16:8(L:D)h throughout development and in the first week of their adult life. Also food source had a significant effect on the freezing temperature of C. montrouzieri: the SCP of ladybirds fed the citrus mealybug, Planococcus citri (Risso)(Hemiptera: Pseudococcidae), was 1.6 °C higher than the value of −17.2 °C observed for ladybirds provided with eggs of the flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). However, neither cold acclimation nor diet had a significant effect on the lethal times of C. montrouzieri. Overall, the time required to kill 50 % of the population at a temperature of 5 °C ranged from 12.8 days for ladybirds fed P. citri mealybugs to 14.4 days for ladybirds fed E. kuehniella eggs. All individuals exposed to a constant 5 °C had died by day 24. Based on the results from this laboratory study, it is deemed unlikely that C. montrouzieri could establish outdoors in western Europe, and it is therefore expected to pose little risk to non-target species in this area when used as an augmentative biological control agent.
更多
查看译文
关键词
Biological control,Environmental risk assessment,Cold tolerance,Non-native species,Predator,Coleoptera,Coccinellidae
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要