Runaway electron studies in TEXTOR

Nuclear Fusion(2015)

引用 12|浏览26
暂无评分
摘要
The evolution of runaway electrons in disruptive plasmas in TEXTOR is determined by observing the synchrotron radiation (hard component E > 25 MeV) and by measuring the runway electrons with an energy of a few MeV using a scintillator probe. Disruptions are initiated by a massive argon gas injection performed by a fast valve. The observed runaway beam of the high energy component (synchrotron radiation) fills about half of the diameter of the original plasma. The beam is smooth and shows no indication of filamentation. The initial conditions are in all cases very similar. The temporal development of the runaway electrons, however, is different: one observes cases with and without subsequent mode excitation and other cases in which the hard runaway component survives the apparent end of the runaway plateau. Several methods are applied to remove the runaway electrons including massive gas injection from two additional valves of different sizes as well as external and internal ergodization by inducing a tearing mode. The mitigation is only marginally successful and it is clearly found that the runaways in disruptions are substantially more robust than runaways created in stationary, low density discharges.
更多
查看译文
关键词
runaway,mitigation,disruption,TEXTOR,tokamak
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要