PEP-1-SOD1 fusion proteins block cardiac myofibroblast activation and angiotensin II-induced collagen production

BMC Cardiovascular Disorders(2015)

引用 7|浏览21
暂无评分
摘要
Background Oxidative stress is closely associated with cardiac fibrosis. However, the effect of copper, zinc-superoxide dismutase (SOD1) as a therapeutic agent is limited due to the insufficient transduction. This study was aimed to investigate the effect of PEP-1-SOD1 fusion protein on angiotensin II (ANG II)-induced collagen metabolism in rat cardiac myofibroblasts (MCFs). Methods MCFs were pretreated with SOD1 or PEP-1-SOD1 fusion protein for 2 h followed by incubation with ANG II for 24 h. Cell proliferation was measured by Cell Counting Kit-8. Superoxide anion productions were detected by both fluorescent microscopy and Flow Cytometry. MMP-1 and TIMP-1 were determined by ELISA. Intracellular MDA content and SOD activity were examined by commercial assay kits. Protein expression was analyzed by western blotting. Results PEP-1-SOD1 fusion protein efficiently transduced into MCF, scavenged intracellular O 2 − , decreased intracellular MDA content, increased SOD activity, suppressed ANG II-induced proliferation, reduced expression of TGF-β1, α-SMA, collagen type I and III, restored MMP-1 secretion, and attenuated TIMP-1 secretion. Conclusion PEP-1-SOD1 suppressed MCF proliferation and differentiation and reduced production of collagen type I and III. Therefore, PEP-1-SOD1 fusion protein may be a potential novel therapeutic agent for cardiac fibrosis.
更多
查看译文
关键词
Cell-penetrating peptide,Copper,Zinc-superoxide dismutase,Cardiac myofibroblasts,Collagen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要