Molecular engineering of cocktail co-sensitization for efficient panchromatic porphyrin-sensitized solar cells

ENERGY & ENVIRONMENTAL SCIENCE(2012)

引用 151|浏览17
暂无评分
摘要
Co-sensitization of two or more dyes with complementary absorption spectra on a semiconductor film is an effective approach to enhance the performance of a dye-sensitized solar cell (DSSC). Porphyrin sensitizer YD2-oC8 showed outstanding photovoltaic performance co-sensitized with an organic dye to cover the entire visible spectral region, 400-700 nm. To promote the light-harvesting capability beyond 700 nm, a porphyrin dimer (YDD6) was synthesized for a co-sensitized system. We report a systematic approach for engineering of molecular co-sensitization of TiO2 films in a cocktail solution containing YD2-oC8, an organic dye (CD4) and YDD6 in a specific molar ratio to optimize the photovoltaic performance of the device. The resulting device showed panchromatic spectral features in the IPCE action spectrum in the region 400-700 nm attaining efficiencies of 75-80%; the spectrum is extended to the near-IR region attaining 40-45% in 700-800 nm region, giving J(SC)/mA cm(-2) = 19.28, V-OC/mV = 753, FF = 0.719, and eta = 10.4% under standard AM 1.5 G one-sun irradiation. This performance is superior to what is obtained from the individual single-dye devices and the two-dye co-sensitized systems. The shifts of TiO2 potential upon dye uptake and the kinetics of charge recombination were examined through measurements of the charge extraction (CE) and intensity-modulated photovoltage spectroscopy (IMVS), respectively. Five co-sensitized systems were investigated to demonstrate that suppression of dye aggregation of YDD6 in the co-sensitized film is a key factor to further improve the device performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要