Downscaling Biogeochemistry in the Benguela Eastern Boundary Current
OCEAN MODELLING(2015)
IFREMER | UMR5566 CNRS IRD CNES UPS
Abstract
Dynamical downscaling is developed to better predict the regional impact of global changes in the framework of scenarios. As an intermediary step towards this objective we used the Regional Ocean Modeling System (ROMS) to downscale a low resolution coupled atmosphere-ocean global circulation model (AOGCM; IPSL-CM4) for simulating the recent-past dynamics and biogeochemistry of the Benguela eastern boundary current. Both physical and biogeochemical improvements are discussed over the present climate scenario (1980-1999) under the light of downscaling.Despite biases introduced through boundary conditions (atmospheric and oceanic), the physical and biogeochemical processes in the Benguela Upwelling System (BUS) have been improved by the ROMS model, relative to the IPSL-CM4 simulation. Nevertheless, using coarse-resolution AOGCM daily atmospheric forcing interpolated on ROMS grids resulted in a shifted SST seasonality in the southern BUS, a deterioration of the northern Benguela region and a very shallow mixed layer depth over the whole regional domain. We then investigated the effect of wind downscaling on ROMS solution. Together with a finer resolution of dynamical processes and of bathyrnetric features (continental shelf and Walvis Ridge), wind downscaling allowed correction of the seasonality, the mixed layer depth, and provided a better circulation over the domain and substantial modifications of subsurface biogeochemical properties. It has also changed the structure of the lower trophic levels by shifting large offshore areas from autotrophic to heterotrophic regimes with potential important consequences on ecosystem functioning. The regional downscaling also improved the phytoplankton distribution and the southward extension of low oxygen waters in the Northern Benguela. It allowed simulating low oxygen events in the northern BUS and highlighted a potential up scaling effect related to the nitrogen irrigation from the productive BUS towards the tropical/subtropical South Atlantic basin. This study shows that forcing a downscaled ocean model with higher resolution winds than those issued from an AOGCM, results in improved representation of physical and biogeochemical processes. (C) 2015 Elsevier Ltd. All rights reserved.
MoreTranslated text
Key words
Ocean modeling,Downscaling,Upscaling,Upwelling,Biogeochemistry,Benguela,ROMS
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Climate Dynamics 2019
被引用13
Climate Dynamics 2019
被引用47
Ocean Sciences Meeting 2020 2020
被引用58
A Dynamically Downscaled Ensemble of Future Projections for the California Current System
Frontiers in Marine Science 2021
被引用63
Latin american journal of aquatic research 2021
被引用3
ICES JOURNAL OF MARINE SCIENCE 2021
被引用53
Projected Shifts in 21st Century Sardine Distribution and Catch in the California Current
FRONTIERS IN MARINE SCIENCE 2021
被引用10
ATMOSPHERIC RESEARCH 2023
被引用2
EARTH AND SPACE SCIENCE 2023
被引用1
Elementa Science of the Anthropocene 2024
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话