Building optical matter with binding and trapping forces

Proceedings of SPIE(2004)

引用 23|浏览6
暂无评分
摘要
Very high frequency oscillations of intense light fields interact with micron-size dielectric objects to exert dc optical forces that allow polarizable particles to levitate, to be trapped and to be bound. Such optical forces are also suitable to arrange cold atoms in optical lattices. Various assemblages of optical traps, including periodic arrays, can be constructed either with independent lasers, or with a single laser beam split into different parts later recombined by interference, as well as through the use of diffractive elements. These optical-well arrays serve as templates for writing and erasing dynamic two-dimensional and three-dimensional "optical crystals", composed of mono-dispersed polystyrene spheres in water. Subsequently, the crystals become diffractive structures themselves. The association of micro-fluidics and optical trapping allows for the formation of optical traps into micro-channels. This leads to perform microchemistry experiments, such as fluorescence detection, on individual bodies attached to trapped particles. Self-trapping due to the optical binding force relates to the interaction between different dielectric objects located in an electromagnetic field; each one reacts not only to the field of the incident beam, but also to the induced fields radiated coherently by all other particles. Optical binding strongly influences the equilibrium state and the behavior of optical crystals. It must have the potential for creating collective effects.
更多
查看译文
关键词
optical trapping,optical binding,optical crystals,optical quasicrystals,microfluidic,diffractive optical elements,interferometry,holography,Talbot trapping,speckle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要