A first-principles molecular dynamics approach for predicting optical phonon lifetimes and far-infrared reflectance of polar materials

Journal of Quantitative Spectroscopy and Radiative Transfer(2012)

引用 37|浏览4
暂无评分
摘要
The Lorentz oscillator model is well-known for its effectiveness to describe the far-infrared optical properties of polar materials. The oscillator strength and damping factor in this model are usually obtained by fitting to experimental data. In this work, a method based on first-principles simulations is developed to parameterize the Lorentz oscillator model without any fitting parameters. The high frequency dielectric constant is obtained from density functional perturbation theory, while the optical phonon frequencies and damping factors are calculated using an analysis of ab initio molecular dynamics trajectories. This method is then used to predict the far-infrared properties of GaAs, and the results are in good agreement with experimental data.
更多
查看译文
关键词
Far-infrared,First-principles,Phonon lifetime
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要