Improving the sensitivity of optically pumped magnetometers by hyperfine repumping

Journal of The Optical Society of America B-optical Physics(2015)

引用 14|浏览12
暂无评分
摘要
Most optically pumped magnetometers based on alkali atom vapor cells and pumped by a single narrow-band laser suffer from a loss of signal since atoms become trapped in the ground hyperfine states that are not coupled to the laser beam. This can be counteracted by additional optical repumping of these ground-state levels. We study hyperfine repumping using cesium vapor cells with partly overlapped ground-state splitting due to their nitrogen buffer-gas filling. We implement two methods of repumping and compare them to the conventional case of F = 4 pumping: F = 3 repumping with an additional repumper laser and combined pumping/repumping in the light-narrowing mode, where a single high-power laser is tuned near the F = 3 transitions. All these modes are investigated for two different methods of spin-phase synchronization: the M-x and intensity modulation methods. For both methods, any kind of repumping results in a clear improvement of the magnetometer sensitivity compared to no repumping, but in the M-x mode it is more pronounced (about 50 versus 200 fT/root Hz for a 50 mm(3) Cs vapor cell). The mechanisms responsible for the distinct results in the different working modes are discussed. (C) 2015 Optical Society of America
更多
查看译文
关键词
magnetometers,hyperfine repumping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要