High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis.

Translational Research(2015)

引用 67|浏览20
暂无评分
摘要
Recent evidence suggests that microRNAs (miRNAs), small, noncoding RNA molecules that regulate gene expression, may play a role in the regulation of metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). To identify miRNAs that mediate NAFLD-related fibrosis, we used high-throughput sequencing to assess miRNAs obtained from liver biopsies of 15 individuals without NAFLD fibrosis (F0) and 15 individuals with severe NAFLD fibrosis or cirrhosis (F3-F4), matched for age, sex, body mass index, type 2 diabetes status, hemoglobin Alc, and use of diabetes medications. We used DESeq2 and Kruskal-Wallis test to identify miRNAs that were differentially expressed between NAFLD patients with or without fibrosis, adjusting for multiple testing using Bonferroni correction. We identified a total of 75 miRNAs showing statistically significant evidence (adjusted P value <0.05) for differential expression between the 2 groups, including 30 upregulated and 45 downregulated miRNAs. Quantitative reverse-transcription polymerase chain reaction analysis of selected miRNAs identified by sequencing validated 9 of 11 of the top differentially expressed miRNAs. We performed functional enrichment analysis of dysregulated miRNAs and identified several potential gene targets related to NAFLD-related fibrosis including hepatic fibrosis, hepatic stellate cell activation, transforming growth factor beta signaling, and apoptosis signaling. We identified forkhead box 03 and F-box WD repeat domain containing 7, E3 ubiquitin protein ligase (FBXW7) as potential targets of miR-182, and found that levels of forkhead box 03, but not FBXW7, were significantly decreased in fibrotic samples. These findings support a role for hepatic miRNAs in the pathogenesis of NAFLD-related fibrosis and yield possible new insight into the molecular mechanisms underlying the initiation and progression of liver fibrosis and cirrhosis.
更多
查看译文
关键词
miRNA,NAFLD,NASH,T2D
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要