Formation of a Rigid Amorphous Fraction in Poly(3-(2′-ethyl)hexylthiophene)

ACS Macro Letters(2014)

引用 30|浏览2
暂无评分
摘要
Herein, we detail the formation of a rigid amorphous fraction in poly(3-(2'-ethyl)hexylthiophene) (P3EHT) at high relative crystallinity, yielding a more complete picture of the solid-state structure. In the differential scanning calorimetry (DSC) heating scans of isothermally crystallized P3EHT a distinct endothermic peak appears slightly above the crystallization temperature. This previously undescribed endothermic feature of P3EHT's thermal behavior is observed consistently similar to 20 degrees C above the crystallization temperature-shifting to higher temperatures with increasing crystallization temperature-and increases in magnitude with both time and crystallization temperature. Here, we determine the origins of this endothermic peak with DSC and temperature-modulated DSC (TMDSC). TMDSC reveals that the annealing peak observed in the total heat flow (THF) heat flow equivalent to that of conventional DSC-is a consequence of an enthalpic relaxation observable as an endothermic peak in the nonreversible heat flow (NHF) and a glass transition evident as a step increase in the reversible heat flow (RHF). In conjunction with conventional DSC observations, these results indicate that the observed annealing peak is a consequence of the formation of distinct amorphous regions-a mobile amorphous fraction (MAF) and a rigid amorphous fraction (RAF)-during the isothermal crystallization process and not the melting of a distinct crystallite population or melt recrystallization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要