Improving Cryogenic Deuterium-Tritium Implosion Performance On Omega

T. C. Sangster,V. N. Goncharov,R. Betti,P. B. Radha, T. R. Boehly,D. T. Casey,T. J. B. Collins,R. S. Craxton, J. A. Delettrez, D. H. Edgell,R. Epstein,C. J. Forrest,J. A. Frenje,D. H. Froula,M. Gatu-Johnson,Y. Yu Glebov, D. R. Harding,M. Hohenberger,S. X. Hu,I. V. Igumenshchev, R. Janezic, J. H. Kelly,T. J. Kessler,C. Kingsley, T. Z. Kosc, J. P. Knauer, S. J. Loucks,J. A. Marozas,F. J. Marshall,A. V. Maximov,R. L. Mccrory, P. W. Mckenty, D. D. Meyerhofer,D. T. Michel,J. F. Myatt, R. D. Petrasso,S. P. Regan, W. Seka,W. T. Shmayda, R. W. Short,A. Shvydky, S. Skupsky,J. M. Soures,C. Stoeckl,W. Theobald, V. Versteeg, B. Yaakobi,J. D. Zuegel

PHYSICS OF PLASMAS(2013)

引用 52|浏览44
暂无评分
摘要
A flexible direct-drive target platform is used to implode cryogenic deuterium-tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat-IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs. (C) 2013 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要