Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell

ENVIRONMENTAL TECHNOLOGY(2016)

引用 33|浏览1
暂无评分
摘要
Biogas contains trace compounds detrimental for solid oxide fuel cell (SOFC) application, especially sulphur-containing compounds and volatile organic silicon compounds (VOSiCs). It is therefore necessary to remove these impurities from the biogas for fuelling an SOFC. In this paper, dynamic lab-scale adsorption tests were performed on synthetic polluted gas to evaluate the performance of a polishing treatment to remove hydrogen sulphide (H2S - sulphur compound) and octamethylcyclotetrasiloxane (D4 - VOSiC). Three kinds of adsorbents were tested: an activated carbon, a silica gel (SG) and a zeolite (Z). Z proved to be the best adsorbent for H2S removal, with an adsorbed quantity higher than 75 mgH(2)S/g(Z) at the SOFC tolerance limit. However, as concerns D4 removal, SG was the most efficient adsorbent, with an adsorbed quantity of about 184mg(D4)/g(SG) at the SOFC tolerance limit. These results could not be explained by structural characteristics of the adsorbents, but they were partly explained by chemical interactions between the adsorbate and the adsorbent. In these experiments, internal diffusion was the controlling step, Knudsen diffusion being predominant to molecular diffusion. As Z was also a good adsorbent for D4 removal, competition phenomena were investigated with Z for the simultaneous removal of H2S and D4. It was shown that H2S retention was dramatically decreased in the presence of D4, probably due to D4 polymerization resulting in pore blocking. [GRAPHICS] .
更多
查看译文
关键词
biogas purification,adsorption,SOFC,hydrogen sulphide,siloxanes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要