Evolution of surface melt damage, its influence on plasma performance and prospects of recovery

Journal of Nuclear Materials(2013)

引用 34|浏览20
暂无评分
摘要
Experiments have been carried out in the TEXTOR, ASDEX Upgrade (AUG) and Alcator C-Mod (C-Mod) tokamaks to study melt-layer motion, macroscopic W-erosion from the melt as well as the changes of material properties such as grain-size and voids. In addition the effect of multiple exposures is studied to judge the potential amelioration of inflicted melt damage. The parallel heat flux at the radial position of the PFCs in the plasma ranges from around q∥∼45MW/m2 at TEXTOR up to q∥∼500MW/m2 at C-Mod which covers scenarios close to ITER parameters, allowing samples to be exposed and molten even at shallow divertor angles. Melt-layer motion perpendicular to the magnetic field is observed consistent with a Lorentz-force originating from thermoelectric emission of the hot sample. While melting in the limiter geometry at TEXTOR is rather quiescent causing no severe impact on plasma operation, exposure in the divertors of AUG and C-Mod shows significant impact on operation, leading to subsequent disruptions. The power-handling capabilities are severely degraded by forming exposed hill structures and changing the material structure by re-solidifying and re-crystallizing the original material. Melting of W seems highly unfavorable and needs to be avoided especially in light of uncontrolled transients and misaligned PFCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要