谷歌浏览器插件
订阅小程序
在清言上使用

Using Damage Delocalization to Model Localization Phenomena in Bammann-Chiesa-Johnson Metals

JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME(2012)

引用 6|浏览4
暂无评分
摘要
The Bammann, Chiesa, and Johnson (BCJ) material model predicts unlimited localization of strain and damage, resulting in a zero dissipation energy at failure. This difficulty resolves when the BCJ model is modified to incorporate a nonlocal evolution equation for the damage, as proposed by Pijaudier-Cabot and Bazant (1987, "Nonlocal Damage Theory," ASCE J. Eng. Mech., 113, pp. 1512-1533.). In this work, we theoretically assess the ability of such a modified BCJ model to prevent unlimited localization of strain and damage. To that end, we investigate two localization problems in nonlocal BCJ metals: appearance of a spatial discontinuity of the velocity gradient in any finite, inhomogeneous body, and localization of the dissipation energy into finite bands. We show that in spite of the softening arising from the damage, no spatial discontinuity occurs in the velocity gradient. Also, we find that the dissipation energy is continuously distributed in nonlocal BCJ metals and therefore cannot localize into zones of vanishing volume. As a result, the appearance of any vanishing width adiabatic shear band is impossible in a nonlocal BCJ metal. Finally, we study the finite element (FE) solution of shear banding in a rectangular plate, deformed in plane strain tension and containing an imperfection, thereby illustrating the effects of imperfections and finite size on the localization of strain and damage.
更多
查看译文
关键词
stress,deformation,plane strain,tension,energy dissipation,metals,temperature,hardening,constitutive equations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要