Asynchronous Distributed ADMM for Large-Scale Optimization- Part II: Linear Convergence Analysis and Numerical Performance

IEEE Trans. Signal Processing(2016)

引用 63|浏览77
暂无评分
摘要
The alternating direction method of multipliers (ADMM) has been recognized as a versatile approach for solving modern large-scale machine learning and signal processing problems efficiently. When the data size and/or the problem dimension is large, a distributed version of ADMM can be used, which is capable of distributing the computation load and the data set to a network of computing nodes. Unfortunately, a direct synchronous implementation of such algorithm does not scale well with the problem size, as the algorithm speed is limited by the slowest computing nodes. To address this issue, in a companion paper, we have proposed an asynchronous distributed ADMM (AD-ADMM) and studied its worst-case convergence conditions. In this paper, we further the study by characterizing the conditions under which the AD-ADMM achieves linear convergence. Our conditions as well as the resulting linear rates reveal the impact that various algorithm parameters, network delay, and network size have on the algorithm performance. To demonstrate the superior time efficiency of the proposed AD-ADMM, we test the AD-ADMM on a high-performance computer cluster by solving a large-scale logistic regression problem.
更多
查看译文
关键词
Convergence,Signal processing algorithms,Delays,Optimization,Algorithm design and analysis,Distributed databases,Computers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要