谷歌浏览器插件
订阅小程序
在清言上使用

Fully Distributed Flocking with a Moving Leader for Lagrange Networks with Parametric Uncertainties

arXiv (Cornell University)(2015)

引用 184|浏览47
暂无评分
摘要
This paper addresses the leader–follower flocking problem with a moving leader for networked Lagrange systems with parametric uncertainties under a proximity graph. Here a group of followers move cohesively with the moving leader to maintain connectivity and avoid collisions for all time and also eventually achieve velocity matching. In the proximity graph, the neighbor relationship is defined according to the relative distance between each pair of agents. Each follower is able to obtain information from only the neighbors in its proximity, involving only local interaction. We consider two cases: (i) the leader moves with a constant velocity, and (ii) the leader moves with a varying velocity. In the first case, a distributed continuous adaptive control algorithm accounting for unknown parameters is proposed in combination with a distributed continuous estimator for each follower. In the second case, a distributed discontinuous adaptive control algorithm and estimator are proposed. Then the algorithm is extended to be fully distributed with the introduction of gain adaptation laws. In all proposed algorithms, only one-hop neighbors’ information (e.g., the relative position and velocity measurements between the neighbors and the absolute position and velocity measurements) is required, and flocking is achieved as long as the connectivity and collision avoidance are ensured at the initial time and the control gains are designed properly. Numerical simulations are presented to illustrate the theoretical results.
更多
查看译文
关键词
Flocking,Cooperative control,Lagrange dynamics,Multi-agent systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要