Variable Selection is Hard.

computational learning theory(2015)

引用 43|浏览66
暂无评分
摘要
Variable selection for sparse linear regression is the problem of finding, given an m x p matrix B and a target vector y, a sparse vector x such that Bx approximately equals y. Assuming a standard complexity hypothesis, we show that no polynomial-time algorithm can find a k'-sparse x with ||Bx-y||^2<=h(m,p), where k'=k*2^{log^{1-delta} p} and h(m,p)<=p^(C_1)*m^(1-C_2), where delta>0, C_1>0,C_2>0 are arbitrary. This is true even under the promise that there is an unknown k-sparse vector x^* satisfying Bx^*=y. We prove a similar result for a statistical version of the problem in which the data are corrupted by noise. To the authors' knowledge, these are the first hardness results for sparse regression that apply when the algorithm simultaneously has k'>k and h(m,p)>0.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要