D-3: Abnormal Driving Behaviors Detection And Identification Using Smartphone Sensors

2015 12TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON)(2015)

引用 157|浏览41
暂无评分
摘要
Real-time abnormal driving behaviors monitoring is a corner stone to improving driving safety. Existing works on driving behaviors monitoring using smartphones only provide a coarse-grained result, i.e. distinguishing abnormal driving behaviors from normal ones. To improve drivers' awareness of their driving habits so as to prevent potential car accidents, we need to consider a fine-grained monitoring approach, which not only detects abnormal driving behaviors but also identifies specific types of abnormal driving behaviors, i.e. Weaving, Swerving, Sideslipping, Fast U-turn, Turning with a wide radius and Sudden braking. Through empirical studies of the 6-month driving traces collected from real driving environments, we find that all of the six types of driving behaviors have their unique patterns on acceleration and orientation. Recognizing this observation, we further propose a fine-grained abnormal Driving behavior Detection and iDentification system, D-3, to perform real-time high-accurate abnormal driving behaviors monitoring using smartphone sensors. By extracting unique features from readings of smartphones' accelerometer and orientation sensor, we first identify sixteen representative features to capture the patterns of driving behaviors. Then, a machine learning method, Support Vector Machine (SVM), is employed to train the features and output a classifier model which conducts fine-grained identification. From results of extensive experiments with 20 volunteers driving for another 4 months in real driving environments, we show that D-3 achieves an average total accuracy of 95.36%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要