Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes

Scientific Reports(2016)

引用 20|浏览31
暂无评分
摘要
One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO 2 (SQDs:SiO 2 ) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature ( T ) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO 2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations.
更多
查看译文
关键词
Electronic properties and materials,Optical properties and devices,Quantum dots,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要