From Network Reliability to the Ising Model: A Parallel Scheme for Estimating the Joint Density of States.

PHYSICAL REVIEW E(2016)

引用 11|浏览12
暂无评分
摘要
Network reliability is the probability that a dynamical system composed of discrete elements interacting on a network will be found in a configuration that satisfies a particular property. We introduce a reliability property, Ising feasibility, for which the network reliability is the Ising model's partition function. As shown by Moore and Shannon, the network reliability can be separated into two factors: structural, solely determined by the network topology, and dynamical, determined by the underlying dynamics. In this case, the structural factor is known as the joint density of states. Using methods developed to approximate the structural factor for other reliability properties, we simulate the joint density of states, yielding an approximation for the partition function. Based on a detailed examination of why naive Monte Carlo sampling gives a poor approximation, we introduce a parallel scheme for estimating the joint density of states using a Markov-chain Monte Carlo method with a spin-exchange random walk. This parallel scheme makes simulating the Ising model in the presence of an external field practical on small computer clusters for networks with arbitrary topology with similar to 10(6) energy levels and more than 10(308) microstates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要