Solving a Mixture of Many Random Linear Equations by Tensor Decomposition and Alternating Minimization.

arXiv: Learning(2016)

引用 52|浏览30
暂无评分
摘要
We consider the problem of solving mixed random linear equations with $k$ components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample corresponds to which model) are not observed. We give a tractable algorithm for the mixed linear equation problem, and show that under some technical conditions, our algorithm is guaranteed to solve the problem exactly with sample complexity linear in the dimension, and polynomial in $k$, the number of components. Previous approaches have required either exponential dependence on $k$, or super-linear dependence on the dimension. The proposed algorithm is a combination of tensor decomposition and alternating minimization. Our analysis involves proving that the initialization provided by the tensor method allows alternating minimization, which is equivalent to EM in our setting, to converge to the global optimum at a linear rate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要