Improving the sampling strategy for point-to-point line-of-sight modelling in urban environments.

International Journal of Geographical Information Science(2017)

引用 7|浏览32
暂无评分
摘要
Visibility modelling calculates what an observer could theoretically see in the surrounding region based on a digital model of the landscape. In some cases, it is not necessary, nor desirable, to compute the visibility of an entire region i.e. a viewshed, but instead it is sufficient and more efficient to calculate the visibility from point to point, or from a point to a small set of points, such as computing the intervisibility of predators and prey in an agent-based simulation. This paper explores how different line-of-sight LoS sample ordering strategies increase the number of early target rejections, where the target is considered to be obscured from view, thereby improving the computational efficiency of the LoS algorithm. This is of particular importance in dynamic environments where the locations of the observers, targets and other surface objects are being frequently updated. Trials were conducted in three UK cities, demonstrating a robust fivefold increase in performance for two strategies hop, divide and conquer. The paper concludes that sample ordering methods do impact overall efficiency, and that approaches which disperse samples along the LoS perform better in urban regions than incremental scan methods. The divide and conquer method minimises elevation interception queries, making it suitable when elevation models are held on disk rather than in memory, while the hopping strategy was equally fast, algorithmically simpler, with minimal overhead for visible target cases.
更多
查看译文
关键词
Visibility analysis, LBS, urban modelling, line of sight, sample ordering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要