Training Spiking Deep Networks for Neuromorphic Hardware.

arXiv: Neural and Evolutionary Computing(2016)

引用 18|浏览23
暂无评分
摘要
We describe a method to train spiking deep networks that can be run using leaky integrate-and-fire (LIF) neurons, achieving state-of-the-art results for spiking LIF networks on five datasets, including the large ImageNet ILSVRC-2012 benchmark. Our method for transforming deep artificial neural networks into spiking networks is scalable and works with a wide range of neural nonlinearities. We achieve these results by softening the neural response function, such that its derivative remains bounded, and by training the network with noise to provide robustness against the variability introduced by spikes. Our analysis shows that implementations of these networks on neuromorphic hardware will be many times more power-efficient than the equivalent non-spiking networks on traditional hardware.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要