Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery.

Optics Express(2017)

引用 40|浏览14
暂无评分
摘要
In deep tissue photoacoustic imaging the spatial resolution is inherently limited by the acoustic wavelength. Recently, it was demonstrated that it is possible to surpass the acoustic diffraction limit by analyzing fluctuations in a set of photoacoustic images obtained under unknown speckle illumination patterns. Here, we purpose an approach to boost reconstruction fidelity and resolution, while reducing the number of acquired images by utilizing a compressed sensing computational reconstruction framework. The approach takes into account prior knowledge of the system response and sparsity of the target structure. We provide proof of principle experiments of the approach and demonstrate that improved performance is obtained when both speckle fluctuations and object priors are used. We numerically study the expected performance as a function of the measurement's signal to noise ratio and sample spatial-sparsity. The presented reconstruction framework can be applied to analyze existing photoacoustic experimental data sets containing dynamic fluctuations.
更多
查看译文
关键词
dynamic speckle illumination,imaging,sparse joint support recovery,diffraction-limit
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要