Object Based Scene Representations Using Fisher Scores Of Local Subspace Projections

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016)(2016)

引用 28|浏览41
暂无评分
摘要
Several works have shown that deep CNNs can be easily transferred across datasets, e.g. the transfer from object recognition on ImageNet to object detection on Pascal VOC. Less clear, however, is the ability of CNNs to transfer knowledge across tasks. A common example of such transfer is the problem of scene classification, that should leverage localized object detections to recognize holistic visual concepts. While this problems is currently addressed with Fisher vector representations, these are now shown ineffective for the high-dimensional and highly non-linear features extracted by modern CNNs. It is argued that this is mostly due to the reliance on a model, the Gaussian mixture of diagonal covariances, which has a very limited ability to capture the second order statistics of CNN features. This problem is addressed by the adoption of a better model, the mixture of factor analyzers (MFA), which approximates the non-linear data manifold by a collection of local sub-spaces. The Fisher score with respect to the MFA (MFA-FS) is derived and proposed as an image representation for holistic image classifiers. Extensive experiments show that the MFA-FS has state of the art performance for object-to-scene transfer and this transfer actually outperforms the training of a scene CNN from a large scene dataset. The two representations are also shown to be complementary, in the sense that their combination outperforms each of the representations by itself. When combined, they produce a state-of-the-art scene classifier.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要