谷歌浏览器插件
订阅小程序
在清言上使用

Highly Efficient Optical Director Reorientation of Liquid-Crystalline Polymer Induced by Dye Additives

Physical review E(2017)

引用 8|浏览22
暂无评分
摘要
Light-induced director orientation of polymeric liquid-crystalline systems was investigated. The materials under study were composed of a nematic liquid-crystalline polymer (NLCP) and a small amount (0.05-0.5 wt.%) of conformationally active (azobenzene) or stable (anthraquinone) dye impurity. Light action on the homogeneously aligned polymer films above glass transition temperature leads to the director reorientation and, consequently, to a change in the extraordinary refractive index. The effect is associated with the dye molecule excitation and related change of intermolecular forces. In the case of NLCP with conformationally active dye dopant, an extremely high orientational optical response was detected (nonlinear coefficient is n_{2}∼0.1cm^{2}/W). In contrast, the efficiency of orientational light action on NLCP with conformationally stable dye dopant is of the same order of magnitude as that of dye-doped low-molar-mass liquid crystals. At the normal light incidence on the NLCP doped with azo-dye, the threshold director orientation is observed which is similar to the Fréedericksz transition under the action of magnetic and electric fields. The obtained high-orientational optical response of NLCP caused by azo-dye dopant in combination with the possibility of the recording of deformed structure in the glassy state, typical for polymer compounds, reveals new opportunities in photonics applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要