Structure-based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae .

FEBS OPEN BIO(2017)

引用 22|浏览7
暂无评分
摘要
Effective vaccines are urgently needed to combat gonorrhea, a common sexually transmitted bacterial infection, for which treatment options are diminishing due to rapid emergence of antibiotic resistance. We have used a rational approach to the development of gonorrhea vaccines, and genetically engineered nanoparticles to present antigenic peptides of Neisseriagonorrhoeae, the causative agent of gonorrhea. We hypothesized that the ferritin nanocage could be used as a platform to display an ordered array of N.gonorrhoeae antigenic peptides on its surface. MtrE, the outer membrane channel of the highly conserved gonococcal MtrCDE active efflux pump, is an attractive vaccine target due to its importance in protecting N.gonorrhoeae from host innate effectors and antibiotic resistance. Using computational approaches, we designed constructs that expressed chimeric proteins of the Helicobacterpylori ferritin and antigenic peptides that correspond to the two surface-exposed loops of N.gonorrhoeae MtrE. The peptides were inserted at the N terminus or in a surface-exposed ferritin loop between helices alpha A and alpha B. Crystal structures of the chimeric proteins revealed that the proteins assembled correctly into a 24-mer nanocage structure. Although the inserted N.gonorrhoeae peptides were disordered, it was clear that they were displayed on the nanocage surface, but with multiple conformations. Our results confirmed that the ferritin nanoparticle is a robust platform to present antigenic peptides and therefore an ideal system for rational design of immunogens.
更多
查看译文
关键词
crystallography,gonorrhea,nanoparticle,rational vaccine design,structural vaccinology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要