Chrome Extension
WeChat Mini Program
Use on ChatGLM

Sphinx: Merging Knowledge-Based and Ab Initio Approaches to Improve Protein Loop Prediction.

Bioinformatics(2017)

Cited 58|Views44
No score
Abstract
Abstract Motivation Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Supplementary information Supplementary data are available at Bioinformatics online.
More
Translated text
Key words
Proteins
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined