Bayesian Optimization with Gradients

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017)(2017)

引用 237|浏览50
暂无评分
摘要
Bayesian optimization has been successful at global optimization of expensive-to-evaluate multimodal objective functions. However, unlike most optimization methods, Bayesian optimization typically does not use derivative information. In this paper we show how Bayesian optimization can exploit derivative information to decrease the number of objective function evaluations required for good performance. In particular, we develop a novel Bayesian optimization algorithm, the derivative-enabled knowledge-gradient (dKG), for which we show one-step Bayes-optimality, asymptotic consistency, and greater one-step value of information than is possible in the derivative-free setting. Our procedure accommodates noisy and incomplete derivative information, comes in both sequential and batch forms, and can optionally reduce the computational cost of inference through automatically selected retention of a single directional derivative. We also compute the d-KG acquisition function and its gradient using a novel fast discretization-free technique. We show d-KG provides state-of-the-art performance compared to a wide range of optimization procedures with and without gradients, on benchmarks including logistic regression, deep learning, kernel learning, and k-nearest neighbors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要