谷歌浏览器插件
订阅小程序
在清言上使用

Drivers of Productivity Trends in Cork Oak Woodlands over the Last 15 Years

Remote sensing(2016)

引用 7|浏览4
暂无评分
摘要
Higher biodiversity leads to more productive ecosystems which, in turn, supports more biodiversity. Ongoing global changes affect ecosystem productivity and, therefore, are expected to affect productivity-biodiversity relationships. However, the magnitude of these relationships may be affected by baseline biodiversity and its lifeforms. Cork oak (Quercus suber) woodlands are a highly biodiverse Mediterranean ecosystem managed for cork extraction; as a result of this management cork oak woodlands may have both tree and shrub canopies, just tree and just shrub canopies, and just grasslands. Trees, shrubs, and grasses may respond differently to climatic variables and their combination may, therefore, affect measurements of productivity and the resulting productivity-biodiversity relationships. Here, we asked whether the relationship between productivity and climate is affected by the responses of trees, shrubs, and grasses in cork oak woodlands in Southern Portugal. To answer this question, we linked a 15-year time series of Enhanced Vegetation Index (EVI) derived from Landsat satellites to micrometeorological data to assess the relationship between trends in EVI and climate. Between 2000 and 2013 we observed an overall decrease in EVI. However, EVI increased over cork oaks and decreased over shrublands. EVI trends were strongly positively related to changes in relative humidity and negatively related to temperature. The intra-annual EVI cycle of grasslands and sparse cork oak woodland without understorey (savannah-like ecosystem) had higher variation than the other land-cover types. These results suggest that oaks and shrubs have different responses to changes in water availability, which can be either related to oak physiology, to oaks being either more resilient or having lagged responses to changes in climate, or to the fact that shrublands start senesce earlier than oaks. Our results also suggest that in the future EVI could improve because the rate of increase in minimum EVI is greater than the rate of decrease in maximum EVI, and that this is contingent on management of the shrub understorey as it affects the rate of decrease in maximum EVI. This will be the challenge for the persistence of cork oak woodlands, their associated biodiversity and social-ecological system.
更多
查看译文
关键词
cork oak,time series,Landsat,Enhanced Vegetation Index,inter-annual variability,climate,biodiversity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要