Improving Uintah's Scalability Through the Use of Portable Kokkos-Based Data Parallel Tasks.

PEARC(2017)

引用 8|浏览9
暂无评分
摘要
The University of Utah's Carbon Capture Multidisciplinary Simulation Center (CCMSC) is using the Uintah Computational Framework to predict performance of a 1000 MWe ultra-supercritical clean coal boiler. The center aims to utilize the Intel Xeon Phi-based DOE systems, Theta and Aurora, through the Aurora Early Science Program by using the Kokkos C++ library to enable node-level performance portability. This paper describes infrastructure advancements and portability improvements made possible by the integration of Kokkos within Uintah. This integration marks a step towards consolidating Uintah's MPI+PThreads and MPI+CUDA hybrid parallelism approaches into a single MPI+Kokkos approach. Scalability results are presented that compare serial and data parallel task execution models for a challenging radiative heat transfer calculation, central to the center's predictive boiler simulations. These results demonstrate both good strong-scaling characteristics to 256 Knights Landing (KNL) processors on the NSF Stampede system, and show the KNL-based calculation to compete with prior GPU-based results for the same calculation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要